CS 229 Project:
Motion from Spacetime Constraints

Matt Ahrens (mahrens@cs.brown.edu)
Brett Levin (blevin@cs.brown.edu)

April 19, 2001

1 Abstract

We have implemented a simplified form of the spacetime constraint animation
method described by Witkin & Kass, in which constrained optimization tech-
niques are applied to kinematic equations to derive physically plausible motion.!
To make this a feasible final project, we have foregone the “function box” GUI
for specifying the system in favor of a simple text format.

2 Details

Functionally, we’ve broken the tasks down as follows:

Problem specification. We list the scalar independent variables (.S;),
constraint functions (C;(S;)), and the objective function (R(S;)) to be
minimized in a text file, which is parsed at runtime into a symbolic rep-
resentation.

Symbolic differentiation and evaluation of the above functions, used
to aid the optimization process. Witkin & Kass employ a Sequential
Quadratic Programming technique, which relies upon Jacobian and Hes-
sian derivative matrices of the system.

Iterative refinement of the S; via SQP or other numeric methods.

Visualization via an Open GL front-end, possibly allowing runtime tweak-
ing of system parameters (e.g. keyframes).

Matt worked mainly on the first two parts, functional representation and
functional differentiation and evaluation, which tie together closely. Brett worked
mainly on the refinement algorithm and visualization.

Now we’ll take a look at the particulars of implementing each aspect.

L Andrew Witkin and Michael Kass, Spacetime Constraints, Siggraph 1988

2.1 Problem Specification

In the spacetime constraint method, we pose the animation problem in equa-
tion form for constrained optimization. We have the following elements, with
examples to show our syntax:

e constants—used for things like gravity and keyframes. Example:

constants:
xi=0, yi=0, xf=10.0, yf=0, 1=5.2, mO, ml1, IO, I1, g=9.8;

e scalar independent variables—the state variables, such as the positions of
and forces on objects at each frame of the animation, that we are trying to
solve for. Scalar variables implicitly get indexed by frame, but this process
is invisible to the user when writing the problem specification. The user
only has to specify the components of the “state vector” of the system,
and any per-frame indexing happens automatically. Example:

variables:
x, y, a0, al;

e constraint functions—functions on the scalar variables which we drive to
zero during the course of optimization in order to enforce as constraints.
Constraint functions have a specified duration, describing the time range
over which they apply. This lets us do things like constrain Luxo’s base to
the ground over the first and last 10 frames. The text file format supports
taking time-index derivatives of scalar variables, in order to get things like
velocity (dz/dt) in the form of finite differences. Example:

constraints:

[0, n/10]: # following constraints apply to frames [0, n/10)
X - Xi;

y -yl

[0, n]: # following constraints apply to all frames
m0*x0’’ + ml*(-(11*Cos(a0 + al)* (a0’ + al’)"2) -
11*Sin(a0 + a1)*(a0’’ + al’’) + x0’’);

e objective function—the overarching function which we are trying to min-
imize. This may be energy usage, fuel consumption, or something of the
kind, and may include penalties for things like extreme joint angles. Ex-
ample:

objective:

[0, n]:

sum of the torques over frames O to n
(I0 * a0’7)"2 + (I1 * al’’)"2;

We parse in the problem specification file using a parser generated by Lex and
Yacc. We represent the equations internally a expression trees, which makes it
easy to apply algebraic transformations (such as differentiation or simplification)
to the expressions.

2.2 Symbolic Differentiation

Given the above functions, we need to be able to find their derivatives with
respect to the state variables for use in the linear optimization process. This
amounts to differentiating an expression tree with respect to a given variable.
We produce the partial derivatives once at startup time, by recursively applying
the chain rule for addition, subtraction, multiplication, division, exponentiation,
sine, and cosine. Since we are simply recursively applying the chain rule to each
node of the expression tree, very large expression trees are generated.

2.3 Algebraic Simplification

Luckily, the large expressions generated by the differentiation process can be
easily simplified, as can be seen in this example:

L1 m+t*/y — cos(t +m)
= 0-m+01-0+(y-(1-tY)—0-t3)/y>—0—sin(t+m)-(1+0)
= t/y—sin(t+m)

It was typical to have partial derivatives with hundreds of arithmetic operations.
By applying algebraic transformations to these expression trees, we dramatically
reduce the number of arithmetic operations required to evaluate these expres-
sions. The simplification process could typically eliminate more than 99% of
the arithmetic operations. Due to the nature of the equations, most of the
partial derivatives simplified to zero. In the following examples, e represents
an expression, and [represents a literal value. The transformations include
straightforward simplifications such as:

0O+e = e
Oxe = 0
lxe = e

as well as more complex transformations such as:

lxer+lxey = Ix(e;+e2)
0—lxe = (-I)xe
(lixer)x(laxea) = (l1xl2)*(e1%ea)
(e1/ea) xes = (e1xe3)/ea

and also strength reduction transformations, in which we substitute a (possibly
more complicated) expression which is easier for the computer to calculate. For
example:
e = Hf) e
e/l = ex(1/1)

Once we have simplified the derivatives, it is straightforward to determine which
derivatives are always zero, so that we can take into account this sparsity in-
formation when evaluating the expressions and also when solving the linear
systems.

2.4 Expression evaluation

The most straightforward way to evaluate our expression trees is to recursively
evaluate each node using an algorithm such as

double evaluate(node n) {
if (n represents a symbol)
return the current value of n;
else /* n is a simple operation such as add, multiply, etc */
return evaluate(n’s left child) op evaluate(n’s right child)

}

However, this type of algorithm is extremely slow, since we must make a func-
tion call for each arithmetic operation. To make this faster, we compile the
expressions into machine code at run time, which reduces the time required to
evaluate the Jacobian by a factor of 10, since each arithmetic operation now
simply requires one floating-point instruction. Since no function calls are re-
quired (we compute the sine and cosine by a polynomial approximation), we
can almost always keep the current state and temporary values in registers, so
very few loads and stores are needed.

We use conditional move instructions instead of branching instructions when
computing the sine and cosine, so it would be farily straightforward to take into
account instruction timing information (such as latency and grouping rules)
when scheduling instructions. On the UltraSparc IIi, our simplistic instruction
scheduling algorithm achieves approximately 3 cycles per instruction. We esti-
mate that an instruction scheduling algorithm which took into account timing
information would be able to achieve at least 1 cycle per instruction.

2.5 Iterative Refinment

Witkin & Kass employ a Sequential Quadratic Programming method which
they detail in their paper. The method amounts to finding 1st- and 2nd-order
Newton-Raphson steps on the state variables which minimize the constraint and
objective functions, respectively. This process is iteratived until a satisfactory
solution is found. At the heart of the process is solving two sparse linear sys-
tems in sequence. Since the matrices involved can grow very large (the Hessian
for example grows as the square of the number of frames), quick solutions to
these systems (employing the sparsity patterns of the matrices) are crucial. The
original paper uses a conjugate gradient method to solve these systems with-
out having to find matrix inverses; we’re currently trying to get this approach
working.

2.6 Visualization

While ideally this whole process would be instantaneous, we recognize that this
probably won’t be the case until we are farther along on various exponential
technological development curves. That said, we provide feedback as the re-
finement algorithm runs, showing intermediate solutions as they are reached
and allowing the watchful user to bail out if the refinment process runs amok,
numerically speaking.

Since a crucial aspect of the spacetime technique is that time is discretized
into frames, and since more frames require more processing, we linearly in-
terpolate the resulting state variables to smooth out motion inbetween frames
and allow for reasonable-looking results without a huge number of frames (time
samples).

Additionally, our visualizer can display force and torque vectors, which is
useful for debugging.

3 Comments

3.1 Appeal

The draw of this technique is its promise to yield physically true animation with
little effort on the animator’s part by discovering “good” motion implicit in the
physical formulation of the system. In the application to Luxo jumping, this
method is particularly apt in that the objective function (muscle power spent)
reflects the fitness function of energy efficiency that real life organisms have
spent millions of years optimizing against.

3.2 Limitations

Despite the magical and serendipitous allure of the promised results, this method
suffers some very real drawbacks:

e It’s unnatural, from the animator’s point of view. Using this approach
requires knowledge of how to model the specific system mathematically,
as well as knowing when and where to bring ad-hoc techniques into play
(e.g. gluing Luxo’s base to the ground for the first 3 frames; giving ‘style’
points in the objective function for a pretty jump; etc.) This reflects the
fact that this approach tries to recreate the cause of a given animation
— the physical roots of motion — rather than mimicking a desired effect.
As a result, this approach inverts the approach taken by most tools for
animators, whereby actions (tweaking a keyframe, for example) have direct
and predictable results.

e Inflexibile. Changing any system parameters means re-running the opti-
mization process. (This could be partially avoided if all that changes are
constants, since the existing solution could be used as the basis for further

SQP iteration. But if the number of frames changes, the entire anima-
tion must be scrapped.) Furthermore, there is no notion of branching
possibilities: there is no provision for arbitrary collision or interpenetra-
tion constraints, for example. Any bodily contact, like Luxo’s contact
with the floor, needs to be addressed by the arguably ad-hoc approach
of furnishing additional constraints, which unavoidably make assumptions
about the time duration of a given contact. This is very affirmatively not
a general physical animation algorithm; the fact that it revolves highly
around supplying constraints until the desired behavior is observed is tes-
tament to the fact that it is only well suited for animation problems that
are highly constrained to begin with.

e Limited realm of application. The idea of formulating the Lagrangian of
a system and minimizing its’ derivatives with respect to the generalized
coordinates does not seem feasible beyond simple articulated rigid bodies.
More complex bodies, with more degrees of freedom, seem like they would
render this approach computationally intractable.

4 Results

Our system as it stands is capable of parsing in a general syntax (described
above) for posing problems of constrained optimization, of calculating arbitrary
derivatives of the system, of applying SQP iteration to the system, and of pro-
viding visual output for a couple different geometric layouts.

We succesfully used the technique for a few simpler problems, including

e A 2D case where a particle needs to pass through a number of waypoints
with a minimal amount of acceleration, given varying degrees of gravity

e Giving various standing poses for Luxo to move between

Despite a wide range of amusing (or disheartening, depending on your per-
spective) results, we were not able to succeed with our original goal of animating
Luxo jumping. We suspect the problem lies either in our implementation of SQP
or in our execution of the Lagrangian dynamics of Luxo. We tried to use the La-
grangian technique with a simpler system consisting of a single segment with 3
degrees of freedom (position and orientation), but weren’t able to get reasonble
results with it, either.

