
Interactive Raytracing
in the Cave Environment

Matt Ahrens (mahrens@cs.brown.edu)
Vinci Liu (vliu@cs.brown.edu)

May 5, 2000

CS224: Interactive Raytracing in the Cave Environment



Motivation

• There are two major types of rendering algorithms

– Polygon-based renders
∗ Currently used to render objects in the cave
∗ Uses triangles to approximate an object
∗ Hardware-accelerated (OpenGL)
∗ Runs in real time (more or less :-)

Figure 1: A cone approximated by many small triangles

CS224: Interactive Raytracing in the Cave Environment 1



Motivation

• Raytracer

– What we used to render the cave
– More realistic model
– We can easily change the lighting model
– Objects can have reflections, refractive transparency, etc.
– Require more processing power
– Rarely runs in real time

• (we also support triangulated meshes in our raytracer)

CS224: Interactive Raytracing in the Cave Environment 2



Raytracer

• Samples the observer’s field of vision with light rays

• Color of each ray is dependent on secondary rays at the intersection point

CS224: Interactive Raytracing in the Cave Environment 3



Optimizations

• Based on work done at the University of Utah in 1999

– Interactive Ray Tracing by Parker, Martin, Sloan, Shirley, Smits,
and Hansen

1. Bounding Volumes
2. Rendering only the user’s field of vision
3. Scheduling (we need multiple processors to run a real time raytracer)

CS224: Interactive Raytracing in the Cave Environment 4



Scheduling

• Assume goal is to keep slave nodes constantly busy to maximize framerate

• But we have to do other things besides trace rays

– Track position
– Compute which rays to cast and transmit to slaves
– Collect traced data from slave nodes
– Assemble traced colors and display to screen

• Solution: parallelism

• Separate processes/threads running on separate CPUs for each of the
above tasks (6 CPUs — one display CPU per wall)

• We keep the 54 slave nodes tracing rays > 95% of the time!

• Downside: increased latency

CS224: Interactive Raytracing in the Cave Environment 5



Which rays to cast

• Rendering only the User’s Field of Vision

– Uses VRPN (Virtual Reality Peripheral Network from Univ. of North
Carolina) to interface with head tracker

• We cast fixed number of rays in fixed directions relative to user’s head

• Result:

– User perceives constant resolution
– Performance increases, since we cast fewer rays
– Less widely varying framerate, since we cast constant number of rays

per frame

• Side note: We get our traced rays onto the screen by putting the data
into an OpenGL texture map and drawing a 2D textured triangle mesh

CS224: Interactive Raytracing in the Cave Environment 6



Bounding Volumes

• N-ary tree of axis-aligned bounding volumes

• Leaf nodes are primitives contained by bounding volumes

• Interior nodes are bounding volumes which contain bounds of their
children

• Bounding volumes are grouped spatially

– Build the tree so as to minimize cost function
– cost =

∑
nodes surface area × number of children

– Automatic create of object hierarchies for ray tracing, Goldsmith
and Salmon, 1987

• If a ray misses the bounds of an interior node, then it misses all the
node’s children

CS224: Interactive Raytracing in the Cave Environment 7



• Implementation details

– Each ray-bounding volume intersection test can be done with 2
subtracts, 2 multiplies, and 3 compares

– Don’t actually recursively traverse tree, make array with skip pointers
which tell where to go if we miss

CS224: Interactive Raytracing in the Cave Environment 8



Results

• Resolution of 512 × 512 to 1024 × 512 rays per eye

• Using IBM SP2’s 60 Power3 Processors, running in parallel

– 6 master, 54 slave processors

• Scene files up to 40,000 primitives

– With bounding boxes, runtime of a raytracer is sub-linear in the
number of geometric primitives

– We get 10-20 fps

• 512 × 512 × 2 (for stereo) × 10-20 fps = 5-10 million rays per second!!!

• The maximum bandwidth of the IBM SP2 is 40MB/sec

– Maximum frame-rate at 512 × 512 × 2 is 26fps

CS224: Interactive Raytracing in the Cave Environment 9



Finally

• Special thanks to:

– Andy Forsberg
– Tim Rowley

• On to the DEMO!!!

CS224: Interactive Raytracing in the Cave Environment 10


